Spinal Locomotor Circuits Develop Using Hierarchical Rules Based on Motorneuron Position and Identity

نویسندگان

  • Christopher A. Hinckley
  • William A. Alaynick
  • Benjamin W. Gallarda
  • Marito Hayashi
  • Kathryn L. Hilde
  • Shawn P. Driscoll
  • Joseph D. Dekker
  • Haley O. Tucker
  • Tatyana O. Sharpee
  • Samuel L. Pfaff
چکیده

The coordination of multi-muscle movements originates in the circuitry that regulates the firing patterns of spinal motorneurons. Sensory neurons rely on the musculotopic organization of motorneurons to establish orderly connections, prompting us to examine whether the intraspinal circuitry that coordinates motor activity likewise uses cell position as an internal wiring reference. We generated a motorneuron-specific GCaMP6f mouse line and employed two-photon imaging to monitor the activity of lumbar motorneurons. We show that the central pattern generator neural network coordinately drives rhythmic columnar-specific motorneuron bursts at distinct phases of the locomotor cycle. Using multiple genetic strategies to perturb the subtype identity and orderly position of motorneurons, we found that neurons retained their rhythmic activity-but cell position was decoupled from the normal phasing pattern underlying flexion and extension. These findings suggest a hierarchical basis of motor circuit formation that relies on increasingly stringent matching of neuronal identity and position.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Columnar-Intrinsic Cues Shape Premotor Input Specificity in Locomotor Circuits.

Control of movement relies on the ability of circuits within the spinal cord to establish connections with specific subtypes of motor neuron (MN). Although the pattern of output from locomotor networks can be influenced by MN position and identity, whether MNs exert an instructive role in shaping synaptic specificity within the spinal cord is unclear. We show that Hox transcription-factor-depen...

متن کامل

Primacy of Flexor Locomotor Pattern Revealed by Ancestral Reversion of Motor Neuron Identity

Spinal circuits can generate locomotor output in the absence of sensory or descending input, but the principles of locomotor circuit organization remain unclear. We sought insight into these principles by considering the elaboration of locomotor circuits across evolution. The identity of limb-innervating motor neurons was reverted to a state resembling that of motor neurons that direct undulato...

متن کامل

Hindbrain V2a Neurons in the Excitation of Spinal Locomotor Circuits during Zebrafish Swimming

BACKGROUND During locomotion in vertebrates, reticulospinal neurons in the hindbrain play critical roles in providing descending excitation to the spinal cord locomotor systems. However, despite the fact that many genes that are used to classify the neuronal identities of neurons in the hindbrain have been identified, the molecular identity of the reticulospinal neurons that are critically invo...

متن کامل

Transcutaneous electrical spinal-cord stimulation in humans.

Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a "stepping" movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can...

متن کامل

A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function

Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2015